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Abstract

We prove existence of vibrations of a nonhomogeneous string under a
nonlinear time periodic forcing term, in the case the forcing frequency
avoids resonances with the vibration modes of the string (non-resonant
case). The proof relies on a Nash-Moser iteration scheme.1

1 Introduction

In this paper we study forced vibrations of a nonhomogeneous string

{

ρ(x)utt − (p(x)ux)x = µf(x, t, u)

u(0, t) = u(π, t) = 0
(1)

where ρ(x) > 0 is the mass per unit length, p(x) > 0 is the modulus of
elasticity multiplied by the cross-sectional area (see [13] p.291), µ > 0 is
a parameter, and the nonlinear forcing term f(x, t, u) is (2π/ω)-periodic in
time.

Equation (1) is a nonlinear model also for propagation of waves in non-
isotropic media describing seismic phenomena, see e.g. [2].

We look for (2π/ω)-time periodic solutions u(x, t) of (1).
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This problem has received wide attention starting from the pioneering
paper of Rabinowitz [21] dealing with the weakly nonlinear homogeneous
string ρ(x) = p(x) = 1, µ small, and the forcing frequency ω = 1 which
enters in resonance with the proper eigen-frequencies ωj = j ∈ N of the string.
For functions 2π-periodic in time and satisfying spatial Dirichlet boundary
conditions, the spectrum {l2−j2, l ∈ Z, j ≥ 1} of the D’Alembertian operator
∂tt − ∂xx possesses the zero eigenvalue with infinite multiplicity (resonance)
but the remaining eigenvalues are well separated. The corresponding infinite
dimensional bifurcation problem is solved in [21] for nonlinearities f which
are monotone in u; see [6] and references therein for non-monotone f .

Subsequently many other results, both of bifurcation and of global nature
(i.e. µ = 1), have been obtained, still for rational forcing frequencies ω ∈ Q,
relying on these good separation properties of the spectrum, see e.g. [22, 23,
12, 26, 4] and references therein.

When the forcing frequency ω ∈ R \ Q is irrational (non-resonant case)
the situation is completely different. Indeed the D’Alembertian operator
ω2∂tt − ∂xx does not possess the zero eigenvalue but its spectrum {ω2l2 − j2,
l ∈ Z, j ≥ 1} accumulates to zero for almost every ω. This is a “small
divisors problem”.

We underline that this “small divisors” phenomenon arises naturally
for more realistic model equations like (1) where the density ρ(x) and the
modulus of elasticity p(x) are not constant. Indeed in this case the eigen-
frequencies ωj of the string are no more integer numbers, having the asymp-
totic expansion

ω2
j =

j2

c2
+ b +O

(1

j

)

(2)

with suitable constants c, b depending on ρ, p, see (55).
If ω = m/n ∈ Q, good separation properties of the spectrum can been

recovered when p(x) = ρ(x) (so c = 1) and assuming the extra condition
b 6= 0, see [3, 24]. Indeed in this case the linear spectrum

ω2l2 − ω2
j = ω2l2 − j2 − b +O

(1

j

)

possesses at most finitely many zero eigenvalues and the remaining part of the
spectrum is far away from zero. On the other hand, if b = 0, the eigenvalues
with (l, j) ∈ (n,m)Z tend to zero (also in the case ω ∈ Q !).

Existence of weak solutions in the non-resonant case was proved by Ac-
quistapace [1] for ρ = 1, for weak nonlinearities (i.e. µ small), and for a
zero measure set of forcing frequencies ω for which the eigenvalues ω2l2 −ω2

j
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are far away from zero. These frequencies are essentially the numbers whose
continued fraction expansion is bounded, see [25].

For a similar zero measure set of frequencies, McKenna [18] has obtained
some result when µ = 1, for ρ = p = 1, and f(t, x, u) = g(u) + h(t, x) with
g uniformly Lipschitz, via a fixed point argument, see also [5]; see [16, 9] for
related results using variational methods.

Existence of classical solutions of (1) for a positive measure set of frequen-
cies was proved by Plotnikov -Youngerman [19] for the homogeneous string
ρ = p = 1, µ small, and f monotone in u. The monotonicity condition allows
to control the first coefficient in the asymptotic expansion of the eigenvalues
(as in (2)) of some perturbed linearized operator.

Recently Fokam [17] has proved existence of classical periodic solutions
for large frequencies ω in a set of asymptotically full measure, for the homo-
geneous string ρ = p = 1 plus a potential, when µ = 1 and f = u3 + h(t, x)
with h a trigonometric polynomial odd in time and space.

In the present paper we prove existence of classical solutions of the non-
homogeneous string (1) for every ρ(x), p(x) > 0, for general nonlinear terms
f(x, t, u), and for (µ, ω) belonging to a large measure Cantor set Bγ , when
the ratio µ/ω is small, see Theorem 1, covering both the case µ→ 0 and the
case ω → +∞.

In the limit µ/ω → 0 the solution we find tends to a static equilibrium
v(x) with smaller, zero average oscillations w(x, t) of amplitude O(µ/ω),
see (9),(10) and figure 1. The nonlinearity f selects such v through the
infinite dimensional bifurcation equation (7) which possesses non-degenerate
solutions under natural assumptions on f , see hypothesys (V). This problem
was not present in [17] thanks to the symmetry assumptions on f .

PSfrag replacements

0

π
v

w

u = v + w

Figure 1: The solution u(x, t) = v(x) + w(x, t) of (1).

Considering the structure of the expected solution it is natural to attack
the problem via a Lyapunov-Schmidt decomposition.

In the range equation (to find w) a small divisors problem arises and
we solve it with a Nash-Moser type iterative scheme. The inversion of the
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“linearized operators” — which is the core of any Nash-Moser scheme — is
obtained adapting the technique of [7] to the present time-dependent case
(section 4). See also [10, 11, 14, 15] for similar techniques.

It is here where the interaction between the forcing frequency ω and
the normal modes of oscillations of the string linearized at different positions
(approximating better and better the final string configuration) appears. The
set Bγ of “non-resonant” parameters (µ, ω) for which we find a solution of
the range equation (and then of (1)) is constructed avoiding these primary
resonances. In particular the forcing frequency ω must not enter in resonance
with the normal frequencies of oscillations of the string linearized at the
limiting solution, see (11). At the end of the construction we obtain a large
measure Cantor set Bγ which looks like in figure 2. Outside this set the effect
of resonance phenomena shall in general destroy the existence of periodic
solutions like those found in Theorem 1.

We now present rigorously our results.

1.1 Main result

After a time rescaling we look for 2π-periodic solutions of

{

ω2ρ(x)utt − (p(x)ux)x = µf(x, t, u)

u(0, t) = u(π, t) = 0
(3)

where µ ∈ [0, µ̄] for some µ̄ > 0, under the 2π-periodic forcing term

f(x, t, u) =
∑

l∈Z

fl(x, u)e
ilt = f0(x, u) + f̄(x, t, u) (4)

where f̄(x, t, u) :=
∑

l 6=0 fl(x, u)e
ilt.

We suppose that f is analytic in (t, u):

f(x, t, u) =
∑

l∈Z,k∈N

flk(x) u
k eilt

where flk(x) ∈ H1((0, π); C) and2 f−l,k = f ∗
lk.

Hypothesis (F). There exist σ0 > 0, r > 0 such that

∑

l∈Z

‖flk‖2
H1(1 + l2)e(2σ0)2|l| := C2

k(f) <∞ and

+∞
∑

k=0

Ck(f) rk <∞ .

2z∗ denotes the complex conjugate of z ∈ C.
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For example, any nonlinearity f(x, t, u) which is a trigonometric polynomial
in t and a polynomial in u satisfies hypothesys (F) for every σ0, r.

If f(x, t, 0) 6= 0 equation (3) does not possess the trivial solution u = 0.

We look for periodic solutions of (3) in the Hilbert space

Xσ,s :=
{

u : T → H1
0 ((0, π); R), u(x, t) =

∑

l∈Z

ul(x) e
ilt, ul ∈ H1

0 ((0, π); C),

u−l = u∗l , ‖u‖2
σ,s :=

∑

l∈Z

‖ul‖2
H1(1 + l2s)e2σ|l| <∞

}

of 2π-periodic in time functions valued in H1((0, π); R) which have a bounded
analytic extension on the complex strip |Im t| < σ with trace function on
|Im t| = σ belonging to Hs(T;H1((0, π); C)). For s > 1/2, Xσ,s is an algebra:

‖uv‖σ,s ≤ cs‖u‖σ,s‖v‖σ,s ∀ u, v ∈ Xσ,s

with

cs := 2s
(

∑

n∈Z

1

1 + n2s

)1/2

.

We shall use the notation Xσ, resp. ‖ ‖σ, for Xσ,1, resp. ‖ ‖σ,1.
To find solutions of (3) we implement the Lyapunov-Schmidt reduction

according to the decomposition

Xσ,s = V ⊕ (W ∩Xσ,s)

where
V := H1

0 (0, π) , W :=
{

w =
∑

l 6=0

wl(x) e
ilt ∈ X0,s

}

writing every u ∈ Xσ,s as u = u0(x) +
∑

l 6=0 ul(x) e
ilt.

Projecting equation (3), with u(x, t) = v(x) + w(x, t), v ∈ V , w ∈ W ,
yields

{

−(pv′)′ = µΠV f(v + w) bifurcation equation

Lωw = µΠWf(v + w) range equation
(5)

where ΠV , ΠW denote the projectors, f(u)(x, t) := f(x, t, u(x, t)) and

Lωu := ω2ρ(x)utt − (p(x)ux)x .

We shall find solutions of (5) when the ratio µ/ω is small. In this limit
w tends to 0 and the bifurcation equation reduces to the time-independent
equation

−(pv′)′ = µf0(v) (6)
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because, by (4), for w = 0,

ΠV f(v) = ΠV f0(x, v(x)) + ΠV f̄(x, t, v(x)) = f0(v) .

The infinite dimensional “0-th order bifurcation equation” (6) is a nonauto-
nomous second order ordinary differential equation, which, under natural
conditions on f0, possesses non-degenerate solutions satisfying the boundary
conditions v(0) = v(π) = 0.

Hypothesys (V). The problem

{

−(p(x)v′(x))′ = µf0(x, v(x))

v(0) = v(π) = 0
(7)

admits a solution v̄ ∈ H1
0 (0, π) which is non-degenerate, namely the linearized

equation
−(ph′)′ = µ f ′

0(v̄)h

possesses in H1
0 (0, π) only the trivial solution h = 0.

We note that for µ = 0, the trivial solution v̄ = 0 is non-degenerate, so,
by the implicit function theorem, Hypothesis (V) is automatically satisfied
for µ small. We deal also with the case µ not small, see for example Lemmas
2 and 3.

For the difficulties with a possibly degenerate solution we refer to [8].

Let λj denote the eigenvalues of the Sturm-Liouville problem

{

−(p(x)y′(x))′ = λρ(x)y(x)

y(0) = y(π) = 0
(8)

and ωj :=
√

λj. These are the frequencies of the free vibrations of the string
(note that all the eigenvalues λj are positive). Physically, it is the sequence of
the fundamental tone ω1 and all its overharmonics ω2, ω3, . . . which compose
the musical note of the string.

Theorem 1. Suppose p(x), ρ(x) > 0 are of class H3(0, π), f satisfies (F)
and hypothesys (V) holds for some µ0 ∈ [0, µ̄]. Consider the open set

A0 :=
{

(µ, ω) ∈ (µ1, µ2)×(γ,+∞) : |ωl−ωj| >
γ

lτ
, ∀ l = 1, . . . , N0, j ≥ 1

}

where ωj are defined by (8), γ ∈ (0, 1), τ ∈ (1, 2), (µ1, µ2) is a neighborhood
of µ0 (see Lemma 4) and N0 = N0(ρ, p, f, µ̄, v̄, τ) ∈ N is fixed in Lemma 7.
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(Existence) There are constants C, C ′ > 0 depending only on ρ, p, f, µ̄, v̄, τ ,
a C∞ function

w̃ : Ã := A0 ∩
{

(µ, ω) :
µ

ω
≤ C ′γ5

}

→ Xσ0/2 ∩W

and a large, see section 3.3, Cantor set Bγ ⊂ Ã, such that for every (µ, ω) ∈
Bγ there exists a classical solution of (3)

ũ(µ, ω) = v(µ, w̃(µ, ω)) + w̃(µ, ω) ∈ V ⊕ (W ∩Xσ0/2) (9)

satisfying

‖w̃(µ, ω)‖σ0/2 ≤ C
µ

γω
, ‖v(µ, w̃(µ, ω)) − v(µ, 0)‖H1 ≤ C

µ

γω
(10)

and ‖v(µ, 0)− v̄‖H1 ≤ C|µ− µ0|. The Cantor set Bγ is explicitely

Bγ :=
{

(µ, ω) ∈ (µ1, µ2)×(2γ,+∞) : |ωl−ωj| >
2γ

lτ
∀ l = 1, . . . , N0, j ≥ 1,

µ

ω
≤ C ′γ5,

∣

∣

∣
ωl − j

c

∣

∣

∣
>

2γ

lτ
, |ωl− ω̃j(µ, ω)| > 2γ

lτ
∀ l, j ≥ 1

}

(11)

where

c :=
1

π

∫ π

0

(ρ(x)

p(x)

)1/2

dx (12)

and λ̃j(µ, ω) := ω̃2
j (µ, ω) denote the (possibly negative3) eigenvalues of the

Sturm-Liouville problem

{

−(py′)′ − µΠV f
′(v(µ, w̃(µ, ω)) + w̃(µ, ω)) y = λρy

y(0) = y(π) = 0 .
(13)

(Regularity) Suppose, furthermore, ρ(x) ∈ Hm(0, π), p(x) ∈ Hm+1(0, π),
flk(x) ∈ Hm(0, π) and

∑

l,k ‖flk‖Hmrk
m < ∞ for some m ≥ 3, rm > 0. If

‖ũ(· , t)‖H1
0
< rm/Cm for some Cm > 0, then ũ(· , t) ∈ H1

0 (0, π)∩Hm+2(0, π).
This conclusion holds true, for example, when f0(x, 0) = duf0(x, 0) = 0

(so v(µ, 0) = 0, ∀µ) for µ/γω small enough, by (10).

Fixed µ, for every frequency ω in the section

S(µ) :=
{

ω : (µ, ω) ∈ ∪γ∈(0,1)Bγ

}

3In this case ωj(µ, ω) = i
√

|λj(µ, ω)| is a purely imaginary complex number.
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Figure 2: The Cantor set Bγ .

there exists a solution of (1) by Theorem 1. S(µ) has asymptotically full
measure at ω → +∞, i.e.

lim
ω→+∞

|S(µ) ∩ (ω, ω + 1)| = 1 .

Analogously, fixed ω, for every µ in the section

S(ω) :=
{

µ : (µ, ω) ∈ ∪γ∈(0,1)Bγ

}

there exists a solution of (1). For µ small enough, also S(ω) is a “large” set:
for every γ′ ∈ (0, 1), ω′ > 0,

lim
µ→0

∣

∣

∣

{

ω ∈ (ω′, ω′ + 1) :
|S(ω) ∩ (0, µ)|

µ
≥ 1 − γ′

}
∣

∣

∣
= 1 ,

see section 3.3.

Notations. The symbols K, Ki shall denote positive constants depending
only on ρ, p, f, µ̄, v̄, τ .

2 The bifurcation equation

We first prove the analyticity of the Nemitski operator induced by f .
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Lemma 1. Let f satisfy assumption (F). For every σ ∈ [0, σ0], s > 1/2, the
Nemitski operator f is analytic on the ball {u ∈ Xσ,s : cs‖u‖σ,s < r}.

Proof. First note that

∑

l∈Z

‖ul‖∞ ≤
√

π

2

∑

l∈Z

‖ul‖H1 ≤
√

π

2

(

∑

l∈Z

‖ul‖2
H1(1 + l2s)

)1/2( ∑

l∈Z

1

1 + l2s

)1/2

so ‖u‖∞ ≤ cs‖u‖σ,s, ∀ u ∈ Xσ,s, σ ≥ 0, s > 1/2, and f(x, t, u(x, t)) is well-
defined.

By definition of the norm ‖ ‖σ,s, there exists C := C(σ0, s) > 0 such that
∀σ ∈ [0, σ0], ∀k ∈ N,

∥

∥

∑

l∈Z

flk(x)e
ilt

∥

∥

σ,s
≤ C

∥

∥

∑

l∈Z

flk(x)e
ilt

∥

∥

2σ0 ,1
= C Ck(f) < +∞

by the assumption (F). Hence, for cs‖u‖σ,s < r, using the algebra property
of Xσ,s,

‖f(u)‖σ,s ≤
∞

∑

k=0

∥

∥

(

∑

l∈Z

flk(x)e
ilt

)

uk
∥

∥

σ,s
≤ C

∞
∑

k=0

Ck(f) (cs‖u‖σ,s)
k

< C
∞

∑

k=0

Ck(f) rk < +∞

again by (F). The analyticity of the Nemitski operator f w.r.t. ‖ ‖σ,s follows
from the properties of the power series (see e.g. [20], Appendix A). �

Throughout this paper we shall use the spaces Xσ,s with σ ∈ [σ0/2, σ0]

and s ∈ S := {1, 1 − τ−1
2
, 1 + (τ−1)τ

2−τ
}. So we can choose a multiplicative

algebra constant on Xσ,s and a radius R0 such that in the ball {u ∈ Xσ,s :
‖u‖σ,s < R0} f is analytic, and f, f ′, f ′′, . . . are bounded, uniformly in σ, s.

We now give an example in which hypothesis (V ) holds.

Lemma 2. Suppose f0(x, u) = um for m ≥ 3 odd and p(x) ≡ 1. Then, ∀µ,
there exists an unbounded sequence of non-degenerate solutions vn of (7).

Proof. All the solutions of the autonomous equation −v ′′ = µvm are periodic
and can be parametrized by their energy

E =
1

2
v′2 +

µ

m + 1
vm+1 .
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We denote TE the period of the solution vE. We can suppose vE(0) = 0, so
v′E(0) =

√
2E. The other boundary condition vE(π) = 0 is satisfied iff

k
TE

2
= π for some k ∈ N . (14)

By symmetry and energy conservation vE(TE/4) = [(m + 1)E/µ]
1

m+1 . So

TE = 4

∫

[

(m+1)E
µ

] 1
m+1

0

[

2
(

E − µxm+1

m+ 1

)]−1/2

dx

=
4(m+ 1/µ)

1
m+1

E
1
2
− 1

m+1

∫ 1

0

dy
√

2(1 − ym+1)
=
C(m,µ)

E
1
2
− 1

m+1

by the change of variable y = x [E(m + 1)/µ]−
1

m+1 , and (14) is satisfied at
infinitely many energy levels. Let Ē > 0 such that TĒ = 2π/k and denote
the solution v̄ := vĒ.

Let us prove that v̄ is non-degenerate. Any solution h of the linearized
equation at v̄,

−h′′(x) = µm v̄m−1(x) h(x) , (15)

can be written as h = Av̄′ + Bβ, A,B ∈ R, because v̄′(x) and β(x) :=
(∂EvE)|E=Ē(x) are solutions of (15); they are independent because v̄ ′(0) 6= 0
while β(0) = 0. If h(0) = 0 then A = 0. We claim that β(π) 6= 0; as a
consequence, if h(π) = 0, then B = 0, and so h = 0, i.e. v̄ is non-degenerate.
To prove that β(π) 6= 0, we differentiate at Ē the identity vE(kTE/2) = 0,

β(π) + v̄′(π)(∂ETE)|E=Ē = 0 .

Since v̄′(π) = (−1)k
√

2E 6= 0 and ∂ETE 6= 0, we get β(π) 6= 0. �

Lemma 3. If f0(x, 0) = duf0(x, 0) = 0, then v̄ = 0 is a non-degenerate
solution of (7) for every µ.

Proof. The linearized equation −(ph′)′ = 0, h(0) = h(π) = 0 has only
the trivial solution. �

When hypothesys (V) holds at some (µ0, v̄), we solve first the bifurcation
equation in (5) using the standard implicit function theorem. We find, for
every w small enough and µ in a neighborhood of µ0, a unique solution
v(µ, w) of the bifurcation equation.
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Lemma 4. There exist 0 < R < R0, a neighborhood [µ1, µ2] of µ0 and,
∀ σ ∈ [σ0/2, σ0], s ∈ S, a C∞ map

[µ1, µ2] ×
{

w ∈ W ∩Xσ,s : ‖w‖σ,s < R
}

→ V, (µ, w) 7→ v(µ, w)

which solves the bifurcation equation in (5).

Proof. The linear operator

h 7→ −(ph′)′ − µ0dvΠV f(v)[h] = −(ph′)′ − µ0 f
′
0(v) h

is invertible on H1
0 (0, π) by hypothesys (V). �

Remark 1. The solutions of the 0th order bifurcation equation (7) found in
Lemmas 2 and 3 are non-degenerate for every µ, so, in such a case, we can
continue v(µ, w) for all [µ1, µ2] = [0, µ̄].

We denote by λj(µ, w) := ω2
j (µ, w) the possibly negative eigenvalues of

the Sturm-Liouville problem
{

−(py′)′ − µΠV f
′(v(µ, w) + w) y = λρy

y(0) = y(π) = 0 .
(16)

By a comparison principle, see the Appendix, the eigenvalues of (16) satisfy

|λj(µ, w) − λj(µ
′, w′)| ≤ K

(

|µ− µ′| + ‖w − w′‖σ,s

)

. (17)

The non-degeneracy of v̄ := v(µ0, 0) means that λj(µ0, 0) 6= 0 ∀j and by (17)

δ0 := inf
{

∣

∣λj(µ, w)
∣

∣ : j ≥ 1, µ ∈ [µ1, µ2], ‖w‖σ0/2 ≤ R
}

> 0 (18)

eventually taking R smaller. Note also that the index j0 of the smallest
positive eigenvalue is constant, independently on (µ, w).

3 Solution of the range equation

It remains to solve the range equation

Lωw = µΠWF(µ, w) (19)

where
F(µ, w) := f(v(µ, w) + w) .

By the previous lemmas, F is C∞ and bounded, togheter with its derivatives,
on [µ1, µ2] × BR where BR := {w ∈ W ∩Xσ,s : ‖w‖σ,s < R}.
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3.1 The Nash-Moser recursive scheme

We define the sequence of finite-dimensional subspaces

W (n) :=
{

w =
∑

1≤|l|≤Nn

wl(x)e
ilt

}

⊂ W

where Nn := N02
n and N0 ∈ N. We also set

W (n)⊥ :=
{

w =
∑

|l|>Nn

wl(x)e
ilt ∈ W

}

and denote Pn the projection on W (n), P⊥
n on W (n)⊥. For w ∈ W (n)⊥ the

following smoothing estimate holds: if 0 < σ′′ < σ′,

‖w‖σ′′,s ≤ exp[−(σ′ − σ′′)Nn] ‖w‖σ′,s . (20)

The key property for the construction of the iterative sequence is the invert-
ibility of the linear operator

Ln(w)h := −Lωh+ µPn[dwF(µ, w)h] (21)

= −Lωh+ µPn

[

f ′(v(µ, w) + w)
(

h+ dwv(µ, w)[h]
)]

∀ h ∈ W (n) .

Lemma 5. (Inversion of the linear problem) Let τ ∈ (1, 2), γ ∈ (0, 1),
σ ∈ (0, σ0]. Assume4 ω > γ and the non-resonance conditions:

∣

∣

∣
ωl − j

c

∣

∣

∣
>
γ

lτ
∀ l = 1, 2, . . . , Nn, ∀ j ≥ 1 (22)

where c is defined in (12), and

|ω2l2 − λj(µ, w)| > γω

lτ−1
∀ l = 1, 2, . . . , Nn, j ≥ 1 (23)

where λj(µ, w) are the eigenvalues of (16).
Let u := v(µ, w) + w. There exist K1, K

′
1 such that, if

µ

γ3ω
‖ΠWf

′(u)‖
σ,1+

τ(τ−1)
2−τ

< K ′
1 , (24)

then Ln(w) is invertible and

‖Ln(w)−1h‖σ ≤ K1N
τ−1
n

γω
‖h‖σ ∀ h ∈ W (n) . (25)

4This means that equation (3) is non-autonomous indeed.
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Proof. In section 4. �

For ϑ := 3σ0/π
2 we define the sequence

σn+1 := σn − ϑ

(n+ 1)2
, σ0 > σ1 > σ2 > . . . >

σ0

2
. (26)

Lemma 6. (The approximate solution) If (µ, ω) ∈ A0 and µN τ−1
0 /γω <

K ′
2 is sufficiently small, then there exists a solution w0 := w0(µ, ω) ∈ W (0)

of
Lωw0 = µP0F(µ, w0)

satisfying ‖w0‖σ0 ≤ µK2N
τ−1
0 /γω for some K2.

Proof. By definition of A0 in Theorem 1, the eigenvalues of (1/ρ)Lω satisfy

|ω2l2 − λj| >
γω

lτ−1
∀ l = 1, 2, . . . , N0, ∀ j ≥ 1 ,

so Lω is invertible on W (0) and, for some K,

‖L−1
ω h‖σ0 ≤

KN τ−1
0

γω
‖h‖σ0 ∀ h ∈ W (0) . (27)

Then we look for a solution w0 ∈ W (0) of w0 = µL−1
ω P0F(µ, w0). The right-

hand side term is a contraction in {‖w0‖σ0 < R} if µN τ−1
0 /γω is sufficiently

small. �

Given wn ∈ W (n), ‖wn‖σn
< R and An ⊆ A0, we define

An+1 :=
{

(µ, ω) ∈ An :
∣

∣ωl− ωj(µ, wn)
∣

∣ >
γ

lτ
,

∣

∣

∣
ωl − j

c

∣

∣

∣
>
γ

lτ
,

∀ l = 1, 2, . . . , Nn+1, j ≥ 1
}

⊆ An

where λj(µ, wn) = ω2
j (µ, wn) are defined in (16) with w = wn.

In Lemma 6 we have constructed h0 := w0 for (µ, ω) ∈ A0. Next, we
proceed by induction. By means of w0 we define the set A1 as above, and we
find w1 := h0 +h1 ∈ W (1) for every (µ, ω) ∈ A1 by Lemma 7 below. Then we
define A2, we find w2 ∈ W (2) and so on. The main goal of the construction
is to prove that, at the end of the recurrence, the set of parameters (µ, ω) ∈
∩nAn is actually a large set.

Lemma 7. (Inductive step). Fix χ ∈ (1, 2). Suppose that hi ∈ W (i),
∀i = 0, . . . , n, satisfy

‖hi‖σi
<
µK2N

τ−1
0

γω
exp(−χi) (28)

13



where K2 is the constant in Lemma 6; ∀k = 0, . . . , n, wk := h0 + . . . + hk

satisfies ‖wk‖σk
< R and

Lωwk = µPkF(µ, wk) (29)

and suppose that (µ, ω) ∈ An, where Ai+1 is constructed by means of wi as
showed above.

There exist N0 = N0(ρ, p, f, µ̄, v̄, τ) ∈ N and K ′
3 such that: if (µ, ω) ∈

An+1 and µ/γ3ω < K ′
3, then there exists hn+1 ∈ W (n+1) satisfying

‖hn+1‖σn+1 <
µK2N

τ−1
0

γω
exp(−χn+1) (30)

such that wn+1 = wn + hn+1 verifies ‖wn+1‖σn+1 < R and

Lωwn+1 = µPn+1F(µ, wn+1) . (31)

Proof. In short F(w) := F(µ, w) and DF(w) := dwF(µ, w). Equation (31)
for wn+1 = wn + hn+1 is Lω[wn + hn+1] = µPn+1F(wn + hn+1).

By assumption, wn satisfies (29) for k = n, namely Lωwn = µPnF(wn),
so the equation for hn+1 can be written as

Ln+1(wn)hn+1 + µ(Pn+1 − Pn)F(wn) + µPn+1Q = 0 (32)

where, as defined in (21), Ln+1(wn)hn+1 := −Lωhn+1+ µPn+1DF(wn)hn+1,
and Q denotes the quadratic remainder

Q = Q(wn, hn+1) := F(wn+1) − F(wn) −DF(wn)hn+1 .

Step 1: Inversion of Ln+1(wn). We verify the assumptions of Lemma 5. By
definition of An+1, ω satisfies (22). If λj(µ, wn) < 0, then |ω2l2−λj(µ, wn)| ≥
ω2l2 > γω/lτ−1 because ω > γ. If λj(µ, wn) > 0, we have

|ω2l2 − λj(µ, wn)| ≥ |ωl− ωj(µ, wn)|ωl >
γω

lτ−1
∀ l = 1, . . . , Nn+1

because (µ, ω) ∈ An+1. In both cases the non-resonance condition (23) holds.
To verify (24) we need an estimate for wn. Let η := τ(τ − 1)/(2− τ) and

α > 0. Using the elementary inequality

1 + l2(1+η)

1 + l2
· e

2(σ−α)|l|

e2σ|l|
≤ 2l2η

e2α|l|
≤ 2

( η

αe

)2η

, ∀ l 6= 0 ,

we deduce

‖hi‖σn+1,1+η ≤ Cη

(σi − σn+1)η
‖hi‖σi

14



where Cη :=
√

2(η/e)η. Since σi − σn+1 ≥ σi − σi+1 for every i ≤ n,

‖wn‖σn+1,1+η ≤
n

∑

i=0

‖hi‖σn+1,1+η ≤ Cη

n
∑

i=0

‖hi‖σi

(σi − σi+1)η
≤ Sη

µK2N
τ−1
0

γω

using (28) where Sη := (Cη/ϑ
η)

∑+∞
i=0 (i + 1)2η exp(−χi) < +∞. If Sη µK2

N τ−1
0 /γω < R then ‖f ′(un)‖σn+1,1+η ≤ K where un := v(µ, wn) + wn, and

hypotheses (24) is verified for µ/γ3ω < K ′ sufficiently small.
Analogously we get ‖wn‖σn

< R if µN τ−1
0 /γω < K ′′ is small enough.

By Lemma 5 the operator Ln+1(wn) is invertible on W (n+1) and

‖Ln+1(wn)
−1h‖σn+1 ≤

K1N
τ−1
n+1

γω
‖h‖σn+1 , ∀h ∈ W (n+1) . (33)

Equation (32) amounts to the fixed point problem

hn+1 = −µLn+1(wn)−1
[

(Pn+1 − Pn)F(wn) + Pn+1Q
]

:= G(hn+1)

for hn+1 ∈ W (n+1).

Step 2: G is a contraction. We prove that G is a contraction on the
ball Bn+1 := {‖h‖σn+1 < rn+1} where rn+1 := (µK2N

τ−1
0 /γω) exp(−χn+1),

implying (30). By (20)

‖(Pn+1 − Pn)F(wn)‖σn+1 ≤ ‖F(wn)‖σn
exp[−(σn − σn+1)Nn] .

Since ‖wn‖σn
< R, we have ‖Q‖σn+1 ≤ K‖hn+1‖2

σn+1
. Hence, by (33),

‖G(hn+1)‖σn+1 ≤ K
µN τ−1

n+1

γω

(

exp[−(σn − σn+1)Nn] + ‖hn+1‖2
σn+1

)

.

Therefore G(Bn+1) ⊆ Bn+1 if

µKN τ−1
n+1

γω
exp[−(σn − σn+1)Nn] <

rn+1

2
,

µKN τ−1
n+1

γω
r2
n+1 <

rn+1

2
. (34)

By the definition of σn in (26) and Nn := N02
n, the first inequality is verified

for every n ≥ 0 if σ0N0 is greater than a constant depending only on χ,K,K2.
The second inequality is verified for every n ≥ 0 if µN τ−1

0 /γω < K ′ is small
enough.

The estimate for ‖Gh− Gk‖, h, k ∈ Bn+1 is similar. By the Contraction
Mapping Theorem we conclude. �
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Corollary 1. (Existence) Suppose A∞ :=
⋂

n≥0An 6= ∅. If (µ, ω) ∈ A∞

then
w∞(µ, ω) :=

∑

n≥0

hn(µ, ω) ∈ W ∩Xσ0/2

is a solution of the range equation (19) satisfying ‖w∞‖σ0/2 ≤ K3µ/γω, and

u∞ := v(µ, w∞(µ, ω)) + w∞(µ, ω) ∈ Xσ0/2

is a classical solution of (3) satisfying (10).

Proof. Since wn solves (29) for k = n, −Lωwn + µΠWf(un) = µP⊥
n f(un)

∈ W (n)⊥ where un := v(µ, wn) + wn. By (20)

lim
n→+∞

‖ − Lωwn + µf(un)‖σ0/2 ≤ lim
n→+∞

K exp[−(σn − σ0/2)Nn] = 0 .

Since wn → w∞ in ‖ ‖σ0/2 also f(un) → f(u∞) in the same norm, while
Lωwn → Lωw∞ in the sense of distributions. So w∞ is a weak solution of the
range equation (19) and u∞ := v(µ, w∞(µ, ω))+ w∞(µ, ω) ∈ Xσ0/2 is a weak
solution of (3).

Finally, by the equation, ∂x(p(x)∂xu∞(x, t)) is a continuous function in
(x, t) and, ∀t, u∞(· , t) ∈ H3(0, π) ⊂ C2 is a classical solution of (3). �

Remark 2. We shall prove, as a consequence of Lemma 11 and section 3.3,
that A∞ is actually a positive measure set. A possible way to prove it uses
the Whitney extension of w∞, see section 3.2.

Lemma 8. (Regularity) Suppose ρ(x) ∈ Hm(0, π), p(x) ∈ Hm+1(0, π),
flk(x) ∈ Hm(0, π) and

∑

l,k ‖flk‖Hmrk
m <∞ for some m ≥ 3, rm > 0.

There exists Km such that if the solution u∞ of Corollary 1 satisfies
‖u∞(· , t)‖H1 < Km, then u∞(· , t) ∈ Hm+2(0, π) ∩H1

0 (0, π).

Proof. For every fixed t, by the algebra property of Hm

∥

∥f(x, t, u(x, t))
∥

∥

Hm ≤
∑

l,k

‖flk(x)u
k(x)‖Hm ≤ C

∑

l,k

‖flk‖Hm ‖uk‖Hm .

Using the Gagliardo-Nirenberg type inequality ‖uk‖Hm ≤ (Cm‖u‖H1)k−1‖u‖Hm

valid for every u ∈ H1
0 ∩Hm, we get

∥

∥f(x, t, u(x, t))
∥

∥

Hm ≤ C‖u‖Hm

∑

l,k

‖flk‖Hm

(

Cm‖u‖H1

)k−1
(35)

which is convergent for ‖u‖H1 < rm/Cm. The solution u := u∞ satisfies

−(p(x)ux)x = µf(x, t, u) − ρ(x)utt (36)
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and u(· , t) ∈ H3(0, π), ∀t. Suppose ‖u‖H1 < rm/Cm. By induction, assume
u(· , t) ∈ Hk for k = 3, . . . , m. Hence utt(· , t) ∈ Hk and by (35) f(x, t, u) ∈
Hk. This implies by (36) that u ∈ Hk+2. �

Remark 3. The solution u∞ is small if v(µ, 0) = 0, because ‖u∞‖H1 ≤
‖u∞‖σ0/2 ≤ Kµ/γω. In this case u∞(· , t) ∈ Hm+2 for µ/γω small enough.

3.2 Whitney C∞ extension

The functions hn constructed in Lemmas 6 and 7 depend smoothly on the
parameters (µ, ω).

Lemma 9. There is K4, K
′
4 such that for µ/γ3ω < K ′

4, the map hi(µ, ω) ∈
C∞(Ai,W

(i)), and

‖∂ωhi(µ, ω)‖σi
≤ K4µ

γ2ω
exp(−χi

0), ‖∂µhi(µ, ω)‖σi
≤ K4

γω
exp(−χi

0)

where χ0 := (1 + χ)/2.

Proof. Since w0 = µL−1
ω P0F(µ, w0), by the implicit function theorem the

map w0(µ, ω) ∈ C∞(A0,W
(0)). Differentiating the identity Lω(L−1

ω h) = h
w.r.t. ω, by (27), we get ‖∂ωL

−1
ω h‖σ0 ≤ (K/γ2ω) ‖h‖σ0. For µ/γω small,

‖∂ωw0‖σ0 ≤
Kµ

γ2ω
.

Differentiating w.r.t. µ we get also ‖∂µw0‖σ0 ≤ K ′/γω.
By induction, suppose that hi depends smoothly on (µ, ω) ∈ Ai for every

i = 0, . . . , n. For (µ, ω) ∈ An+1, by (31), hn+1 is a solution of

−Lωhn+1 + µPn+1[F(wn + hn+1)−F(wn)] + µ(Pn+1 − Pn)F(wn) = 0 . (37)

By the implitic function theorem hn+1 ∈ C∞ once we prove that

Ln+1(wn+1)[z] := −Lωz + µPn+1DF(wn + hn+1)[z]

is invertible. By (33), Ln+1(wn) is invertible. Hence it is sufficient that

∥

∥

∥
L−1

n+1(wn)(Ln+1(wn+1) − Ln+1(wn))
∥

∥

∥

σn+1

<
1

2
,

which holds true for µ2/γω small enough, since, by (30),

‖Ln+1(wn+1) − Ln+1(wn)‖σn+1 ≤ Kµ‖hn+1‖σn+1 ≤
µ2K ′N τ−1

0

γω
exp(−χn+1) .
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Finally (33) implies

‖Ln+1(wn+1)
−1‖σn+1 ≤

2K1N
τ−1
n+1

γω
. (38)

Differentiating (37) w.r.t. ω

Ln+1(wn+1)[∂ωhn+1]= 2ωρ(x)(hn+1)tt − µ(Pn+1 − Pn)DF(wn)∂ωwn

− µPn+1

[

DF(wn + hn+1) −DF(wn)
]

∂ωwn (39)

and, using (38) and (20),

‖∂ωhn+1‖σn+1 ≤ KN τ−1
n+1

γω

(

ωN2
n+1‖hn+1‖σn+1 +

µ‖∂ωwn‖σn

exp[(σn − σn+1)Nn]
+

+µ‖hn+1‖σn+1 ‖∂ωwn‖σn

)

.

We note that ‖∂ωwn‖σn
≤ ∑n

i=0 ‖∂ωhi‖σi
. Using (34) the sequence an :=

‖∂ωhn‖σn
satisfies

an+1 ≤ KN τ−1
n+1

γω

(

ωN2
n+1rn+1 +

ωγrn+1

N τ−1
n+1

n
∑

i=0

ai + µrn+1

n
∑

i=0

ai

)

≤ bn+1

(

1 +

n
∑

i=0

ai

)

where bn+1 :=
Kµ

γ2ω
N τ+1

n+1 exp(−χn+1),

recalling that rn+1 = (µK/γω) exp(−χn+1). By induction, for Kµ/ωγ2 < 1,
we have an ≤ 2bn and

‖∂ωhn+1‖σn+1 ≤
Kµ

γ2ω
N τ+1

n+1 exp(−χn+1) ≤ K ′µ

γ2ω
exp(−χn+1

0 )

where χ0 := (1 + χ)/2. It follows that ‖∂ωwn+1‖σn+1 ≤ Kµ/γ2ω.
Differentiating (37) w.r.t. µ we obtain the estimate for ∂µhn+1. �

Define, for ν0 > 0,

A∗
n :=

{

(µ, ω) ∈ An : dist
(

(µ, ω), ∂An

)

>
ν0γ

4

N3
n

}

Ãn :=
{

(µ, ω) ∈ An : dist
(

(µ, ω), ∂An

)

>
2ν0γ

4

N3
n

}

⊂ A∗
n .
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Lemma 10. (Whitney extension) There exists w̃ ∈ C∞(A0,W ∩ Xσ0/2)
satisfying

‖w̃(µ, ω)‖σ0/2 ≤
K3µ

γω
, ‖∂ωw̃(µ, ω)‖σ0/2 ≤

Cµ

γ5ω
, ‖∂µw̃(µ, ω)‖σ0/2 ≤

C

γ5ω
(40)

for some C := C(ν0) > 0, such that, ∀(µ, ω) ∈ Ã∞ :=
⋂

n≥0 Ãn, w̃(µ, ω)
solves the range equation (19).

Moreover there exists a sequence w̃n ∈ C∞(A0,W
(n)) such that w̃n(µ, ω) =

wn(µ, ω), ∀(µ, ω) ∈ Ãn, and

‖w̃(µ, ω) − w̃n(µ, ω)‖σ0/2 ≤
K5µ

γω
exp(−χn) . (41)

Proof. Let ϕ : R2 → R+ be a C∞ function supported in the open ball
B(0, 1) of center 0 and radius 1 and with

∫

R2 ϕ = 1. Let ϕn : R2 → R+ be
the mollifier

ϕn(x) :=
N6

n

ν2
0γ

8
ϕ
( N3

n

ν0γ4
x
)

.

Supp (ϕn) ⊂ B(0, ν0γ
4/N3

n) and
∫

R2 ϕn = 1. We define ψn : R2 → R as

ψn(x) :=
(

ϕn ∗ χA∗

n

)

(x) =

∫

R2

ϕn(y − x)χA∗

n
(y) dy

where χA∗

n
is the characteristic function of the set A∗

n. ψn is C∞,

|Dψn(x)| ≤
∫

R2

|Dϕn(x− y)|χA∗

n
(y) dy ≤ N3

n

ν0γ4
C (42)

where C :=
∫

R2 |Dϕ| dy,

0 ≤ ψn(x) ≤ 1, supp(ψn) ⊂ An, ψn(x) = 1 ∀ x ∈ Ãn .

We define, for (µ, ω) ∈ A0, the C∞ functions

h̃n(µ, ω) :=

{

ψn(µ, ω)hn(µ, ω) if (µ, ω) ∈ An

0 if (µ, ω) /∈ An

and

w̃n(µ, ω) :=

n
∑

i=0

h̃i , w̃(µ, ω) :=
∑

i≥0

h̃i

which is a series if (µ, ω) ∈ A∞ :=
⋂

n≥0An.
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The estimate for ‖w̃‖σ0/2 follows by ‖h̃i‖σi
≤ ‖hi‖σi

(because 0 ≤ ψi ≤ 1)
and (28). The estimates for the derivatives in (40) follow differentiating the
product h̃i = ψihi and using (42), (28) and Lemma 9. Similarly it follows
that w̃ is in C∞, see [7] for details.

For (µ, ω) ∈ Ãn, ψn(µ, ω) = 1, implying w̃n = wn. As a consequence, for
(µ, ω) ∈ Ã∞ :=

⋂

n≥0 Ãn, by Corollary 1, w̃ = w∞ solves (19).
Finally, using (28),

‖w̃ − w̃n‖σ0/2 ≤
∑

i≥n+1

‖h̃i‖σi
≤

∑

i≥n+1

Kµ

γω
exp(−χi) ≤ K ′µ

γω
exp(−χn) .

�

Lemma 11. There exist K ′
5 such that if µ/γ2ω < K ′

5 and ν0 < K ′
5 then

Bγ ⊆ Ãn ∀n ≥ 0

where Bγ is defined in (11).

Proof. By induction. Let (µ, ω) ∈ Bγ. Then (µ, ω) ∈ Ã0 if A0 contains the
closed ball of center (µ, ω) and radius 2ν0γ

4/N3
0 . Let (ω′, µ′) belong to such

a ball. Then, ∀l = 1, . . . , N0,

|ω′l − ωj| ≥ |ωl− ωj| − |ω − ω′|l > 2γ

lτ
− 2ν0γ

4

N3
0

l ≥ γ

lτ

if ν0 ≤ 1/2.
Suppose now Bγ ⊆ Ãn and let (µ, ω) ∈ Bγ . To prove that (µ, ω) ∈ Ãn+1,

we have to show that the closed ball of center (µ, ω) and radius 2ν0γ
4/N3

n+1

is contained in An+1. Let (µ′, ω′) belong to such a ball. The non-resonance
condition on |ω′l − j/c| is verified, as above, for ν0 ≤ 1/2. For the other
condition, we denote in short ωn

j (µ′, ω′) := ωj(µ
′, wn(µ

′, ω′)) (see (16) for the
definition of ωj(µ, w)). It results, ∀l = 1, . . . , Nn+1,

|ω′l − ωn
j (µ′, ω′)| ≥ |ωl − ω̃j(µ, ω)| − |ω − ω′|l − |ωn

j (µ′, ω′) − ω̃j(µ, ω)|

>
2γ

lτ
− 2ν0γ

4l

N3
n+1

− |ωn
j (µ′, ω′) − ω̃j(µ, ω)|

>
3γ

2lτ
− |ωn

j (µ′, ω′) − ω̃j(µ, ω)| (43)

if ν0 ≤ 1/4. We now estimate the last term

|ωn
j (µ′, ω′) − ω̃j(µ, ω)| =

|λn
j (µ′, ω′) − λ̃j(µ, ω)|

|ω̃j(µ, ω)|+ |ωn
j (µ′, ω′)| ≤

|λn
j (µ′, ω′) − λ̃j(µ, ω)|√

δ0
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by (18), both for j < j0 and for j ≥ j0. By the comparison principle (17)

δ
−1/2
0 |λn

j (µ
′, ω′) − λ̃j(µ, ω)| ≤ K|µ− µ′| +K‖wn(µ′, ω′) − w̃(µ, ω)‖σ0/2 .

By Lemma 9, ‖∂ωwn‖σ0/2, ‖∂µwn‖σ0/2 ≤ K0/ωγ
2, and being ω, ω′ > γ,

K‖wn(µ′, ω′) − wn(µ, ω)‖σ0/2 ≤
K ′

γ3

ν0γ
4

N3
n+1

<
γ

8lτ
, ∀l = 1, . . . , Nn+1

if ν0 is small enough (1 < τ < 2). On the other hand, since (µ, ω) ∈ Ãn we
have wn(µ, ω) = w̃n(µ, ω) (Lemma 10) and, by (41),

K‖wn(µ, ω)− w̃(µ, ω)‖σ0/2 ≤
K ′′µ

γω
exp(−χn) <

γ

8lτ
, ∀l = 1, . . . , Nn+1

for µ/γ2ω sufficiently small. By (43), collecting the previous estimates,

|ω′l − ωn
j (µ′, ω′)| > γ

lτ
, ∀l = 1, . . . , Nn+1

and (µ′, ω′) belongs to An+1. �

3.3 Measure of the Cantor set Bγ

In the following R := (µ′, µ′′)× (ω′, ω′′) denotes a rectangle contained in the
region {(µ, ω) ∈ [µ1, µ2]× (2γ,+∞) : µ < K ′

6γ
5ω}. Furthermore we consider

ω′′ − ω′ as a fixed quantity (“of order 1”).

Lemma 12. There exist K6, K
′
6 such that, ∀µ ∈ [µ1, µ2], the section

Sγ(µ) := {ω : (µ, ω) ∈ Bγ}

with µ/ωγ5 < K ′
6 in the definition (11) of Bγ, satisfies the measure estimate

|Sγ(µ) ∩ (ω′, ω′′)| ≥ (1 −K6γ)(ω
′′ − ω′) (44)

for γ small. As a consequence, for every R := (µ′, µ′′) × (ω′, ω′′)

|Bγ ∩ R| ≥ |R| (1 −K6γ) . (45)

Proof. We consider just the inequalities |ωl − ω̃j(µ, ω)| > 2γ/lτ in the
definition of Bγ. The analogous inequalities are simpler because j/c and ωj

do not depend on (µ, ω).
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The complementary set we have to estimate is

C :=
⋃

l,j≥1

Rlj

where Rlj := {ω ∈ (ω′, ω′′) : |lω − ω̃j(µ, ω)| ≤ 2γ/lτ}.
We claim that

∣

∣∂ωω̃j(µ, ω)
∣

∣ ≤ Kµ

γ5ω
. (46)

Indeed, by the same arguments as in the proof of Lemma 11 and the com-
parison principle (17) we have

|ω̃j(µ, ω) − ω̃j(µ, ω
′)| ≤ K‖w̃(µ, ω) − w̃(µ, ω′)‖σ0/2 ≤

Kµ

γ5ω
|ω − ω′|

using (40). As a consequence of (46)

∂ω

(

lω − ω̃j(µ, ω)
)

≥ l − Kµ

γ5ω
≥ l

2
∀l ≥ 1

for µ/γ5ω small enough; we deduce |Rlj| ≤ 4γ/lτ+1.
Furthermore the set Rlj is non-empty only if

ω′l − 2γ

lτ
< ω̃j(µ, ω) < ω′′l +

2γ

lτ
.

So, for every fixed l, the number of indices j such that Rl,j 6= ∅ is

]{j} ≤ 1

δ

(

l(ω′′ − ω′) +
4γ

lτ

)

+ 1 ≤ Kl(ω′′ − ω′)

where

δ := inf
{

|ω̃j+1(µ, ω) − ω̃j(µ, ω)| : j ≥ 1, (µ, ω) ∈ Bγ

}

.

For ‖w̃‖σ0/2 ≤ K ′µ/γω < R we have δ ≥ δ1 where

δ1 := inf
{

∣

∣ωj+1(µ, w) − ωj(µ, w)
∣

∣ : j ≥ 1 , µ ∈ [µ1, µ2], ‖w‖σ0/2 ≤ R
}

> 0

(47)
as proved in the Appendix.

In conclusion, the measure of the complementary set is

|C| ≤
+∞
∑

l=1

4γ

lτ+1
K l(ω′′ − ω′) ≤ K ′(ω′′ − ω′)γ

and (44) is proved. Integrating on (µ′, µ′′) we obtain (45). �

By Fubini Theorem also the section Sγ(ω) is large, for ω in a large set.
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Lemma 13. Let
Sγ(ω) := {µ : (µ, ω) ∈ Bγ} .

For every R := (µ′, µ′′) × (ω′, ω′′), γ′ ∈ (0, 1) it results

∣

∣

∣

{

ω ∈ (ω′, ω′′) :
|Sγ(ω) ∩ (µ′, µ′′)|

µ′′ − µ′
≥ 1− γ′

}
∣

∣

∣
≥ (ω′′ −ω′)

(

1−K6
γ

γ′

)

. (48)

Proof. Let consider

Ω+ :=
{

ω ∈ (ω′, ω′′) : |Sγ(ω) ∩ (µ′, µ′′)| ≥ (µ′′ − µ′)(1 − γ′)
}

Ω− :=
{

ω ∈ (ω′, ω′′) : |Sγ(ω) ∩ (µ′, µ′′)| < (µ′′ − µ′)(1 − γ′)
}

.

Using the Fubini theorem

|Bγ ∩R| =

∫ ω′′

ω′

|Sγ(ω) ∩ (µ′, µ′′)| dω (49)

=

∫

Ω+

|Sγ(ω) ∩ (µ′, µ′′)| dω +

∫

Ω−

|Sγ(ω) ∩ (µ′, µ′′)| dω

≤ (µ′′ − µ′)|Ω+| + (µ′′ − µ′)(1 − γ′)|Ω−| .
Minorating the left hand side in (49) by (45) yields

(ω′′ − ω′)(1 −K6γ) ≤ |Ω+| + (1 − γ′)|Ω−| = (ω′′ − ω′) − γ′|Ω−| (50)

and therefore |Ω−| ≤ (ω′′ − ω′)K6γ/γ
′. We deduce by the first inequality in

(50) that |Ω+| ≥ (ω′′ − ω′)(1 −K6γ/γ
′), namely (48). �

By (44)-(48) we deduce the measure estimates for the “sections” (in ω
and µ) of ∪γ∈(0,1)Bγ stated after Theorem 1.

4 Inversion of the linearized problem

Here we prove Lemma 5. Decomposing in Fourier series f ′(u) =
∑

k∈Z
ak(x)

eikt we have, ∀h =
∑

1≤|l|≤Nn
hl(x)e

ilt ∈ W (n),

−Lωh+ µPn[f ′(u)h] =
∑

1≤|l|≤Nn

[

ω2l2ρhl + ∂x

(

p ∂xhl

)]

eilt +

+µPn

[(

∑

k∈Z

ake
ikt

)(

∑

1≤|l|≤Nn

hle
ilt

)]

=
∑

1≤|l|≤Nn

[

ω2l2ρhl + ∂x

(

p ∂xhl

)

+ µa0hl

]

eilt (51)

+µ
∑

|l|,|k+l|∈{1,...,Nn}, k 6=0

ak hl e
i(k+l)t (52)
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distinguishing the diagonal operator (51) by the off-diagonal term (52). Hence
Ln(w) defined in (21) can be decomposed as

Ln(w)h = ρ
(

Dh+M1h+M2h
)

(53)

where

Dh :=
1

ρ

Nn
∑

|l|=1

[

ω2l2ρ hl +
(

p h′l
)′

+ µa0 hl

]

eilt

M1h :=
µ

ρ

∑

|l|,|k|∈{1,...,Nn},l 6=k

ak−l hl e
ikt (54)

M2h :=
µ

ρ
Pn

[

f ′(u) dwv(µ, w)[h]
]

.

To study the eigenvalues of D, we use Sturm-Liouville type techniques.

Lemma 14. (Sturm-Liouville) The eigenvalues λj(µ, w) of the Sturm-
Liouville problem (16) form a strictly increasing sequence which tends to
+∞. Every λj(µ, w) is simple and the following asymptotic formula holds

λj(µ, w) =
j2

c2
+ b +M(µ, w) + rj(µ, w), |rj(µ, w)| ≤ K

j
(55)

∀j ≥ 1, (µ, w) ∈ [µ1, µ2] ×BR, where

c :=
1

π

∫ π

0

(ρ

p

)1/2

dx, b :=
1

4πc

∫ π

0

[

(ρp)′

ρ 4
√
ρp

]′
1

4
√
ρp

dx,

M(µ, w) := − µ

cπ

∫ π

0

ΠV f
′(v(µ, w) + w)√

ρp
dx .

The eigenfunctions ϕj(µ, w) of (16) form an orthonormal basis of L2(0, π)
with respect to the scalar product (y, z)L2

ρ
:= c−1

∫ π

0
yzρ dx. For K big enough

(y, z)µ,w :=
1

c

∫ π

0

p y′z′ +
[

Kρ− µΠV f
′(v(µ, w) + w)

]

yz dx

defines an equivalent scalar product on H1
0 (0, π) and

K ′‖y‖H1 ≤ ‖y‖µ,w ≤ K ′′ ‖y‖H1 ∀y ∈ H1
0 . (56)

ϕj(µ, w) is also an orthogonal basis of H1
0 (0, π) with respect to the scalar

product ( , )µ,w and, for y =
∑

j≥1 ŷj ϕj(µ, w),

‖y‖2
L2

ρ
=

∑

j≥1

ŷ2
j , ‖y‖2

µ,w =
∑

j≥1

ŷ2
j

(

λj(µ, w) +K
)

. (57)
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Proof. In the Appendix. �

We develop Dh =
∑

1≤|l|≤Nn
Dlhl e

ilt where

Dlz :=
1

ρ

[

ω2l2ρz +
(

p z′
)′

+ µa0z
]

, ∀ z ∈ H1
0 (0, π)

and a0 = ΠV f(v(µ, w) + w).
By Lemma 14 each Dl is diagonal w.r.t the basis ϕj(µ, w):

z =
+∞
∑

j=1

ẑj ϕj(µ, w) ∈ H1
0 (0, π) ⇒ Dlz =

+∞
∑

j=1

(

ω2l2 − λj(µ, w)
)

ẑj ϕj(µ, w) .

Lemma 15. Suppose all the eigenvalues ω2l2 − λj(µ, w) are not zero. Then

|Dl|−1/2z :=
+∞
∑

j=1

ẑj ϕj(µ, w)
√

|ω2l2 − λj(µ, w)|
satisfies

∥

∥ |Dl|−1/2z
∥

∥

H1 ≤
K√
αl

‖z‖H1 , ∀z ∈ H1
0 (0, π) (58)

where αl := minj≥1 |ω2l2 − λj(µ, w)| > 0.

Proof. By (57) ‖ |Dl|−1/2z‖2
µ,w ≤ (1/αl) ‖z‖2

µ,w. Hence (58) follows by the
equivalence of the norms (56). �

Lemma 16. (Inversion of D) Assume the non-resonance condition (23).
Then |D|−1/2 : W (n) → W (n) defined by

|D|−1/2h :=
∑

1≤|l|≤Nn

|Dl|−1/2hl e
ilt

satisfies

‖ |D|−1/2h‖σ,s ≤
K√
γω

‖h‖σ,s+ τ−1
2

≤ KN
τ−1
2

n√
γω

‖h‖σ,s , ∀ h ∈ W (n) .

Proof. By (58) and α−l = αl ≥ γω/|l|τ−1

‖ |D|−1/2h‖2
σ,s =

∑

1≤|l|≤Nn

‖ |Dl|−1/2hl‖2
H1(1 + l2s)e2σ|l|

≤
∑

1≤|l|≤Nn

K2|l|τ−1

γω
‖hl‖2

H1(1 + l2s)e2σ|l|

≤ K ′

γω
‖h‖2

σ,s+ τ−1
2
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because |l|τ−1(1 + l2s) < 2(1 + |l|2s+τ−1), ∀ |l| ≥ 1. �

To prove the invertibility of Ln(w) we write (53) as

Ln(w) = ρ|D|1/2
(

U + T1 + T2

)

|D|1/2 (59)

where
{

U := |D|−1/2D |D|−1/2

Ti := |D|−1/2Mi |D|−1/2 , i = 1, 2 .
(60)

With respect to the basis ϕj(µ, w) eilt the operator U is diagonal and its
(l, j)-th eigenvalue is sign(ω2l2 − λj(µ, w)) ∈ {±1}, implying5 ‖U‖σ = 1.

The smallness of T1 requires an analysis of the small divisors. Formula
(55) implies, by Taylor expansion, the asymptotic dispersion relation

∣

∣

∣
ωj(µ, w) − j

c

∣

∣

∣
≤ K

j
(61)

and there exists K such that, for every x ≥ 0,

|x2 − λj∗(µ, w)| = min
j≥1

|x2 − λj(µ, w)| ⇒ j∗ ≥ Kx . (62)

Lemma 17. Assume the non-resonance conditions (22)-(23) and ω > γ.
Then ∀|k|, |l| ∈ {1, . . . , Nn}, k 6= l

αlαk ≥
(

Kγ3ω

|k − l|
τ(τ−1)
2−τ

)2

where αl := minj≥1 |ω2l2 − λj(µ, w)|.

Proof. Since α−l = αl , ∀l, we can suppose l, k ≥ 1.
We distinguish two cases, if k, l are close or far one from each other. Let

β := (2 − τ)/τ ∈ (0, 1).

Case 1. Let 2|k − l| > (max{k, l})β. By (23)

αkαl ≥
(γω)2

(kl)τ−1
≥ (γω)2

(max{k, l})2(τ−1)
≥ C(γω)2

|k − l|
2(τ−1)

β

.

Case 2. Let 0 < 2|k− l| ≤ (max{k, l})β. In this case 2k ≥ l ≥ k/2. Indeed, if

5The operator norm is ‖U‖σ := sup‖h‖σ≤1 ‖Uh‖σ.
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k > l, then 2(k−l) ≤ kβ, so 2l ≥ 2k−kβ ≥ k because β ∈ (0, 1). Analogously
if l > k.

Let i, resp. j, be an integer which realizes the minimum αk, resp. αl, and
write in short λj(µ) := λj(µ, w), ωj(µ) := ωj(µ, w).

If both λi(µ), λj(µ) ≤ 0, then αl ≥ ω2l2, αk ≥ ω2k2, αlαk ≥ ω4 > γ2ω2.
If only λj(µ) ≤ 0, then αlαk ≥ γω3l2/kτ−1 ≥ 21−τγω3 ≥ 21−τγ2ω2.
The really resonant cases happen if λi(µ), λj(µ) > 0.
Suppose, for example, max{k, l} = k. By (61), |ωj(µ) − (j/c)| ≤ K/j,

and, by (62), i ≥ Kωk, j ≥ Kωl. Hence, using also (22),

|(ωk − ωi(µ)) − (ωl− ωj(µ))| =
∣

∣ω(k − l) − (ωi(µ) − ωj(µ))
∣

∣

≥
∣

∣

∣
ω(k − l) − i− j

c

∣

∣

∣
− K

ωl
− K

ωk

≥ γ

(k − l)τ
− 3K

ωk
≥ 2τγ

kβτ
− 3K

ωk

because 2(k − l) ≤ kβ, 2l ≥ k. Since βτ < 1 and k ≤ 2l,

∣

∣(ωk − ωi(µ)) − (ωl − ωj(µ))
∣

∣ ≥ 1

2

( γ

kβτ
+

γ

lβτ

)

∀ k ≥
( K

ωγ

)
1

1−βτ

:= k∗ .

The same conclusion if max{k, l} = l. It follows that, for max{k, l} ≥
k∗, there holds |ωk − ωi(µ)| ≥ γ/2kβτ or |ωl − ωj(µ)| ≥ γ/2lβτ . Suppose
|ωk − ωi(µ)| ≥ γ/2kβτ . Then

αk = |ω2k2 − ω2
i (µ)| ≥ |ωk − ωi(µ)|ωk ≥ γω

2
k1−βτ .

Since l ≤ 2k, for αl we can use (23),

αkαl ≥
γωk1−βτ

2

γω

lτ−1
≥ γ2ω2

2τ
k2−τ−βτ =

γ2ω2

2τ

because 2 − τ − βτ = 0.
On the other hand, if max{k, l} < k∗ = (K/ωγ)1/(τ−1), we can use (23)

for both k, l:

αkαl ≥
(γω)2

(kl)τ−1
>

(γω)2

(k∗)2(τ−1)
= (γω)2

(ωγ

K

)
1

τ−1
2(τ−1)

>
γ6ω2

K2
.

Since γ < 1, taking the minimum for all these cases we conclude. �
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Lemma 18. (Estimate of T1) Assume the non-resonance conditions (22)-
(23), ω > γ, and ΠWf

′(u) =
∑

l 6=0 al(x)e
ilt ∈ X

σ,1+
τ(τ−1)

2−τ

. There exists K

such that

‖T1h‖σ ≤ Kµ

γ3ω
‖ΠWf

′(u)‖
σ,1+ τ(τ−1)

2−τ

‖h‖σ , ∀h ∈ W (n) .

Proof. ∀h ∈ W (n), T1h =
∑

1≤|k|≤Nn
(T1h)k e

ikt where

(T1h)k = |Dk|−1/2
(

M1|D|−1/2h
)

k

= |Dk|−1/2
[

∑

1≤|l|≤Nn, l 6=k

µ
ak−l

ρ
|Dl|−1/2hl

]

.

Setting Am := ‖am/ρ‖H1 , using (58) and Lemma 17,

‖(T1h)k‖H1 ≤ K µ
∑

1≤|l|≤Nn, l 6=k

Ak−l√
αk

√
αl

‖hl‖H1 ≤ Kµ

γ3ω
Sk (63)

where
Sk :=

∑

|l|≤Nn, l 6=k

Ak−l |k − l|
τ(τ−1)
2−τ ‖hl‖H1 .

By (63) we get, defining S(t) :=
∑Nn

|k|=1 Sk e
ikt,

‖T1h‖2
σ =

Nn
∑

|k|=1

‖(T1h)k‖2
H1(1 + k2)e2σ|k|

≤
(Kµ

γ3ω

)2
Nn
∑

|k|=1

S2
k(1 + k2)e2σ|k| =

(Kµ

γ3ω

)2

‖S‖2
σ .

Since S = Pn(ϕψ) with ϕ(t) :=
∑

l∈Z
Al|l|

τ(τ−1)
2−τ eilt and ψ(t) :=

∑Nn

|l|=1 ‖hl‖H1 eilt

‖T1h‖σ ≤ Kµ

γ3ω
‖ϕ‖σ‖ψ‖σ ≤ Kµ

γ3ω

∥

∥

∥
ΠWf

′(u)
∥

∥

∥

σ,1+ τ(τ−1)
2−τ

‖h‖σ

because ‖ϕ‖σ ≤ 2‖ΠWf
′(u)‖

σ,1+ τ(τ−1)
2−τ

and ‖ψ‖σ = ‖h‖σ. �

Lemma 19. (Estimate of T2) Suppose that ΠWf
′(u) ∈ Xσ,1+ τ−1

2
. Then

‖T2h‖σ ≤ Kµ

γω
‖ΠWf

′(u)‖σ,1+ τ−1
2

‖h‖σ , ∀ h ∈ W (n)

for some K.
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Proof. By the definitions (60),(54) and Lemma 16,

‖T2h‖σ ≤ K√
γω

‖M2|D|−1/2h‖σ,1+ τ−1
2

≤ K ′µ√
γω

‖ΠWf
′(u)‖σ,1+ τ−1

2

∥

∥dwv(µ, w)
[

|D|−1/2h
]
∥

∥

σ,1+ τ−1
2

=
K ′µ√
γω

‖ΠWf
′(u)‖σ,1+ τ−1

2

∥

∥dwv(µ, w)
[

|D|−1/2h
]
∥

∥

H1

because dwv(µ, w)[|D|−1/2h] ∈ V . By Lemmas 4 and 16

∥

∥dwv(µ, w)
[

|D|−1/2h
]
∥

∥

H1 ≤ K ‖ |D|−1/2h‖σ,1− τ−1
2

≤ K√
γω

‖h‖σ,1

implying the thesis. �

Proof of Lemma 5. ‖U‖σ = 1. If ‖T1 + T2‖σ < 1/2, then by Neumann
series U + T1 + T2 is invertible in (W (n), ‖ ‖σ) and ‖(U + T1 + T2)

−1‖σ < 2.
By Lemmas 18, 19, this condition is verified if we choose K1 in (24) small
enough. Hence, inverting (59)

Ln(w)−1h = |D|−1/2
(

U + T1 + T2

)−1|D|−1/2
(h

ρ

)

which, using Lemma 16, yields (25). �

5 Appendix

Proof of Lemma 14. Let a(x) ∈ L2(0, π). Under the “Liouville change
of variable”

x = ψ(ξ) ⇔ ξ = g(x), g(x) :=
1

c

∫ x

0

(ρ(s)

p(s)

)1/2

ds , (64)

we have that (λ, y(x)) satisfies
{

−(p(x)y′(x))′ + a(x)y(x) = λρ(x)y(x)

y(0) = y(π) = 0
(65)

if and only if (ν, z(ξ)) satisfies
{

−z′′(ξ) + [q(ξ) + α(ξ)] z(ξ) = νz(ξ)

z(0) = z(π) = 0
(66)
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where

ν = c2λ, r(x) = 4
√

p(x) ρ(x), z(ξ) = y(ψ(ξ)) r(ψ(ξ)),

α(ξ) = c2
a(ψ(ξ))

ρ(ψ(ξ))
, q(ξ) = c2Q(ψ(ξ)), Q =

p

ρ

r′′

r
+

1

2

(p

ρ

)′ r′

r
.

By [20], Theorem 4 in Chapter 2, p.35, the eigenvalues of (66) form an
increasing sequence νj satisfying the asympototics

νj = j2 +
1

π

∫ π

0

(q + α) dξ − 1

π

∫ π

0

cos(2jξ)
(

q(ξ) + α(ξ)
)

dξ + rj, |rj| ≤
C

j

where C := C(‖q+α‖L2) is a positive constant. Moreover every νj is simple
([20], Theorem 2, p.30).

Since p, ρ are positive and belong to H3, if a ∈ H1 then q, α ∈ H1.
Integrating by parts |

∫ π

0
cos(2jξ)(q + α) dξ| ≤ ‖q + α‖H1/j and so

νj = j2 +
1

π

∫ π

0

(q + α) dξ + r′j, |r′j| ≤
C ′

j

for some C ′ := C ′(‖q+α‖H1). Dividing by c2 and using the inverse Liouville
change of variable we obtain the formula for the eigenvalues λj(a) of (65)

λj(a) =
j2

c2
+

1

πc

∫ π

0

Q
√
ρ

√
p
dx +

1

πc

∫ π

0

a√
ρp

dx + rj(a), |rj(a)| ≤
C

j
(67)

for some C(ρ, p, ‖a‖H1) > 0. Formula (55) follows for a(x) = −µΠV f
′(v(µ, w)

+w)(x) and some algebra.
By [20], Theorem 7 p.43, the eigenfunctions of (66) form an orthonormal

basis for L2. Applying in the integrals the Liouville change of variable, the
eigenfunctions ϕj(a) of (65) form an orthonormal basis for L2 w.r.t. the
scalar product ( , )L2

ρ
.

Finally, since ϕj := ϕj(a) solves

−(pϕ′
j)

′ + (Kρ + a)ϕj = (λj(a) +K)ρϕj ,

multiplying by ϕi and integrating by parts gives

(ϕj, ϕi)µ,w = δi,j(λj(a) +K)

and (57) follows (note that λj(a) +K > 0, ∀j, for K large enough). �

Proof of (17). Let a, b ∈ H1(0, π) and consider α := c2a(ψ)/ρ(ψ),
β := c2b(ψ)/ρ(ψ) constructed as above via the Liouville change of variable
(64). By [20], p.34, for every j

|λj(a) − λj(b)| =
1

c2
|νj(α) − νj(β)| ≤ 1

c2
‖α− β‖∞ ≤ K‖a− b‖H1 (68)
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and (17) follows by the mean value theorem because µΠV f(v(µ, w)+w) has
bounded derivatives on bounded sets. �

Proof of (47). By the asymptotic formula (61)

min
j≥1

|ωj+1(µ, w) − ωj(µ, w)| ≥ 1

c
− K

j
>

1

2c

if j > K/2c, uniformly in µ ∈ [µ1, µ2], w ∈ BR. For 1 ≤ j ≤ K/2c the
minimum

mj := min
(µ,w)∈[µ1,µ2]×BR

|ωj+1(µ, w) − ωj(µ, w)|

is attained because a 7→ λj(a) is a compact function on H1 by (68) and the
compact embedding H1(0, π) ↪→ L∞(0, π) (see also [20], Theorem 3 p.31 and
p.34). Each mj > 0 because all the eigenvalues λj are simple. �
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Paris, 2000.

[15] W. Craig, E. Wayne, Newton’s method and periodic solutions of nonlin-
ear wave equations, Comm. Pure Appl. Math. 46 (1993), 1409–1498.

[16] R. De La Llave, Variational Methods for quasi-periodic solutions of par-
tial differential equations, World Sci. Monogr. Ser. Math. 6, 214–228,
2000.

[17] J.-M. Fokam, Forced vibrations via Nash-Moser iteration, preprint,
http://www.ma.utexas.edu/users/jmfokam.

[18] P.J. McKenna, On solutions of a nonlinear wave question when the ratio
of the period to the length of the intervals is irrational, Proc. Amer.
Math. Soc. 93 (1985), no. 1, 59–64.

[19] P.I. Plotnikov, L.N. Yungerman, Periodic solutions of a weakly nonlinear
wave equation with an irrational relation of period to interval length,
translation in Diff. Equations 24 (1988), no. 9, 1059–1065 (1989).
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